OVERVIEW

Telerad solution for N+M redundancy enables to create flexible architectures to integrate back-up units alongside main units. Cost effective solutions exist both for receiver and transmitter units operating on analog interfaces. They can be used to secure the transition toward a full-IP redundancy.

- Full analog solution to secure transition toward VoIP
- Optimized for small to middle size systems
- Complete integration with monitoring
- Easy deployment
- Flexible configuration:
 - from 1 to 16 main radios
 - 1 or 2 backup radio
- Compatible with radios of 9000 series of 1st and 2nd generation (1G and 2G)
- Size: 2U 19’ rack
- Outstanding audio quality ensuring no degradation at system level
- High MTBF
- Remote monitoring and maintenance via JBUS and SNMP
This flexible architecture takes full advantage of our software radios capabilities to enable system design of backup solutions according to system needs: number of frequencies, failure rate, and site configuration.
N+M ADVANTAGES

Cost effective solution for main/standby configuration

Higher MTBF with N+2 configurations

Since backup units are multichannel, they can take over for any main unit in the system. Thus, the availability of the system is improving, which gives a lower failure rate/higher MTTCF.

MTBF between 1+1 and N+2 configurations

![MTBF Graph](image)

Critical failure probability over 20 years between 1+1 and N+2 configurations

![Failure Probability Graph](image)

SYSTEM DESIGN

System integration in radio architecture

Redundancy unit integrates fully between VCS links and radio units with no impact on audio quality. Redundancy system auto-diagnostic algorithms help to detect broken connections and to calibrate analog links.

Redundancy unit monitors radio failures under JBUS and/or SNMP protocols. It fully integrates alongside external monitoring systems with few impacts on external monitoring and control.

Antenna Sharing

Issues with antenna system have been taken into account. TELERAD takes advantages of its expertise in systems design to propose efficient architectures that deal with co-siting issues both for transmitters and receivers. Design can be precisely tailored to customer needs to optimize cost and radio performances.
REDUNDANCY UNIT CHARACTERISTICS

ENVIRONMENT:
Size: 2U – 19-inch rack
Power supply: 24 VDC: 21 V to 31 V – Power supply from radios
Reliability:
- High MTBF
- Failback configuration in case of redundancy unit failure
Interfaces:
- 600 Ω differential audio inputs and outputs
- Relay inputs and outputs for discrete signals: PTT, Call
- JBUS, SNMP and RS482 for monitoring and configuration

HIGH QUALITY AUDIO SIGNAL:
Frequency response:
Audio level variation < 1 dB between 300 Hz and 3500 Hz
Audio distortion:
Audio distortion < 0.5 % between 300 Hz and 3500 Hz
Audio level:
- Inputs between 0 dBm and -10 dBm
- Outputs between 0 dBm and -10 dBm

SYSTEM EASY DEPLOYMENT & INTEGRATION:
Auto configuration:
- Algorithm for automatic detection of radios on JBUS links
- Algorithm for automatic calibration of analog link with radios and VCS
Auto diagnostic:
Algorithm for automatic detection of broken or faulty links.
Built In Test: in case of failure unit fail back in default configuration
Easy maintenance on radio:
Enables to force a radio offline to perform maintenance
Reporting to Supervision:
- SNMP server
- JBUS slave
- RS232 terminal
- Reports current state of switching matrix and radios availability